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Abstract

The most common solution technique is subspace iteration, a comnbina-

tion of inverse iteration and the Rayleigh-Ritz procedure. Some diffi-

culties of this method are mentioned as well as ways to avoid them by

means of spectral transformations. This permits use of the Lanczos algo-

rithm and yields significant reductions in cost.

This paper evolved from an invited talk at the 2nd International Congress

on Numerical Methods in Engineering (GMVI 2) at the Ecole Centrale de

Paris in December 1980. 4
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1. INTRODUCTION

In order to avoid excessive generality we assume that K and M are

real, symmetric n x n matrices. The goal is to compute all the eigen-

values lying in a given interval [ I, T2] together with the correspond-

ing eigenvectors.

For n > 2 the eigenvalues will be real provided that KK + VM is

positive definite for some choice of K and p . For simplicity assume

that either K or M is positive definite.

Example. If K = M =i then every number (real or complex) is an

eigenvalue belonging to

The pair (K, M) is often called a pencil. Its eigenvalues and

eigenvectors are denoted by

Z1 1 Z2, " Zn °

Techniques for solving the problem when n < 100 are described in [Parlett,

19801 and will not be mentioned here.

he most important factor in selecting a particular algorithm is the

relative cost of solving (K - aM)u = v for u to forming the product

u = (K - aM)v . Observe that this is simply the divide: multiply ratio

for the given matrix pencil. Linear equations can be solved iteratively

- .
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(using conjugate gradients or Lanczos) when triangular factorization is

not possible. The remaining sections show how this divide: multiply ratio

affects the solution technique.

With apologies to structural engineers we use capital letters for

matrices, small roman letters for column vectors, and small greek letters

for numbers.

2. SUBSPACE ITERATION

See [Bathe and Wilson, 1976] or [Parlett, 19801 for more details.

It is assumed that M is positive definite.

Before the start, a shift a is chosen in [TI, T2] and the triangular

factorization K - GM = LDL* is computed. Note that for each i = 1, ... , n

(K-0M)-14zI = z V i (2-1)1 ,1 .- TX-i

So the power method with the operator (K - aM)-l4 would converge to the

eigenvector z. belonging to the X. closest to a . The usual normalization is1 1

z *Mz= (Kronecker). Of course, K - aM is not to be inverted

explicitly.

The number of eigenvalues in [TI, T2] is unknown but subspace iter-

ation must begin with the difficult chcice of the dimension p and the

somewhat easier choice of starting vectors (xI, x2, ..., Xp X0 with

x0*MX0 = I . The usual implementation is: for k = 1, 2,... until
0 p

convergence repeat 7 4 $-

- ~ .. I-. .
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1. Solve (K - aM)Yk = MXkl for Y

2. Compute the reduced matrices (or projections) Kk = Yk*KYk

.Mk = Y k *14k *

3. Solve the small problem (Kk - i.MVg i = 0 for eigenvalues ei  and

normalized eigenvectors gl, .... g Set G (g9 ... , g
p k 1

4. Set k kk

5. Test for convergence.

To test for convergence one should use

Theorem. For any x * 0 and any scalar S there exists an eigenvalue

of (K, M) such that

IX- 8 < I(K- em)xll 1 Mx -

Here lull = Y . Thus lIMxII - x'iM which is easy to compute but the

HM

cost of the numerator discourages the use of this theorem. Often users

wait until the values of e "settle down" to the desired accuracy but

such a criterion is not completely reliable.

A serious difficulty with subspace iteration occurs when (K, M) has

eigenvalues outside both ends of [T1, T 2 ]  To illustrate what happens

consider an extreme case: suppose that at some step k one of the Ritz

vectors (the columns of Xk ) is x and satisfies x = (zI + z 30)/ and

< TI < T2 < X1 X + X T, + T2

1 30' 1 30 1 2

it turns out that the corresponding Ritz value is
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z *Mz1 .x +z3 0 *Mz3 0 * T t+T 2

Zl*MZl+Z2*MZ 3 2 2 "
1 12 222

Although e is in the middle of [TI, T2 ] it does not signal that there

is an eigenvalue X nearby. R.L. Taylor calls these "ghost" values and in

[Scott, 19811 it is shown how their presence can prevent the discovery of

good approximate eigenvectors. One remedy is to compute all eigenvalues and

eigenvectors less than T1  and then keep Xk orthogonal to these eigen-

vectors. That is expensive.

3. TRANSFOR4ING THE SPECTRbM

Steps 2, 3, and 4 of subspace iteration carry out the Raleigh-Ritz

procedure which delivers the best approximations to eigenvalues of (K, M)

from the space spanned by Yk ' To remove the troubles of Section 2 apply

the Rayleigh-Ritz procedure to ((K - aM)- 4, I) because the wanted eigen-

values V. , see (2-1), are the extreme ones. However (K - oM)-IM is1

not symmetric. There are two ways out of this difficulty.

I. The Suectral Transformation (see [Ericsson and Ruhe, 1980] for details).

Factor M = LL* and use L*(K - GM)-1 L instead of (K - oM)-i M

In other words change (K - XM)z = 0 into

I (L*z) = L*(K - OM)-IL(L*z) (3-i)

The powerful Lanczos algorithm can be used with the new operator. Another

advantage is that the error bound of Section 2 becames
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4

l e - '! IIL'*(K-.GM)- Lx-.xeII - )'i
- ~ ~ ~ xxe'3-2)

X

and the residual vectors for "k-1 are available after part 1 of step k

The price paid for these advantages is that : muit be factored al-

though it need not be invertible. it is also preferable to factor K - aM

if this is feasible.

II. The inertial inner product.

Recall that we want to use the operator, or matrix, (K - GM)lM

because its eigenvalue distribution is advantageous for both subspace

iteration and for the Lanczos algorithm. However (K - CM)-lM is not

symmetric and it is often said that Lanczos requires a symmetric matrix.

That is not quite correct.

Let us assume for the moment that M is positive definite. We will

consider singular M at the end of this section. The key observation is

that (K - cM)- M is self-adjoint with respect to the "inertial" inner

product

(u, v)M = v.Mu

Here is the proof.

((K - M Mu, v)M = v*M.(K - GM)- Mu

= v*M(K - GM)-I Mu

= (u, (K- aM)-lYv) M 14
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As usual lullM -- (uTu) M . Here is the algorithm.
M

Lanczos Algorithm [ C must be self-adjoint with respect to (, ")M]

Pick rI * 0 and compute I = U1rll . Set q= 0

For j = 1, 2, ... until convergence repeat

1. qj = rj/Sj

2. u = Cqj -qjl j

3. aj = (q. u j)M

4. r q -qa
j+ 1  j jj

5. a UrJ+U Ii

6. Test for convergence.

In our case C = (K -

This formulation is not widely appreciated. it was given explicitly in

[van Kats and van der Vorst, 19771. An alternative, but more expensive

version of the algorithm is given in [Parlett, 1980, p. 3241.

The numbers a. , computed in the course of the algorithm are put1 1

into a tridiagonal matrix

aS

a a

j 3 3

e s .

whose order j grows by one at each step.
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The eigenvalues i , i = 1, , j of T. are the itz ar.roximations

to the eigenvalues of C = (K - .)- . As j increases the outer

values 0. quickly converge to the outer eigenvalues of (K - oM)- M
1 4

and these may be converted, by (2 - 1) , into the required eigenvalues

of (K, M) close to .

Let us consider now the case when M is singular but K is positive

definite. It follows that (K, M) has one or more infinite eigenvalues

while C = (K - aM)- M has one or more zero eigenvalues. Formally the

bilinear expression ('' )M is not a true inner product, however when

restricted to the space corresponding to the finite eigenvalues of (K, M)

it is an inner product. The algorithm given above automatically keeps the

qi q i > 1 , in this subspace. It is necessary to take rI = Mr0 to

ensure that q1  is also in the subspace. This is the only modification

needed when M is nositive semidefinite.

The ghost values which can afflict the Ritz approximations for the

pencil (K, M) cannot affect either (L(K - 7M) L , I) or (C, I)

Consider again the example in Section 1. The Rayleigh quotient of x with

respect to both pencils is P = 1 ( 1 + 1 For any J E (TI, T

2 30 1' 21 31

we find while the algorithm only looks at those Ritz1 ' "2 - (

values outside this interval. The fact that Ritz approximations for

inverted operators prevent the occurrence of ghost vectors was pointed

out in [Scott, 1981].
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Figures 1 and 2 show a comparison of the simple Lanczos algorithm and sub-

space iteration on a structural problem. Comparison was stopped when

subspace iteration exhausted our resources.

To be fair the simple Laonczos algorithm should be ccnpared with the simple :..:er

method and the block Lanczos alorithm should be compared with surspace interation

using the same block size. We nc,, give a theoretical com-arison to cc.r le."ent the

the practical one.

Let A have eighenvalues \. i for i 0, ... , n + 1 . Thus A is (n + 2,1

by (n + 2) . Table 1 gives the number steps m required to reduce the error in

the approximation to zn+1 below 1% of its original value. The eigenvalue error

Xn+l -
3,, will then have been reduced to .010 of its original value. We assume

that the initial vector makes an angle of 450 with the dominant eigenvector. The

values for Lanczos are overestimates. The eigenvalue distribution is a difficult

one but it illustrates the power of the Lanczos algorithm.

Table 1. Number of steos m to reduce error.

n Power Method Lanczos

10 2 32

103 46c7 110
1410 4605L 380

1
n n 00 v n en 200

The superiority of even the simple Lanczos algorithm over subspace interaticon

can be explained as follows. Zuppose that ubzpace iteration uses

a subspace of dimension p and runs for J steps. It produces

Rayleigh Ritz approximation from a subsnace of dimension p at

ever: step. On the other hand, with the same computational effort



and usiz., the same inverted orerator

anczcs :_ roduces, in exact arithmetic, the RayleJr.h Fitz rrxiain

from a Fub-srece of dimension 4;r L7aczoE never fcroetsz an.* .,ectcr that

has been computed in the iteration, althcugh- the vector its-elf may have

been discarded the essenti a! information is cleverly con-'ensed in the

tridia~cnal mnatrix

There isno snace here to -ive a detailed account o -th arczosarln

and the reader is referred to [Iariett, 1980] for more information.

Between 1950 and 197T2 the algcritn.n nad a poor reputation, not because

it was zPoor but because it was rioorly understood. As a result of the

an~alysis of 1Paigz!e the situation was remedied and it did not take lcna for

some lood im-olementations to appear. One important Point is that fairly

cn-eaz error bounds can be conrFuted durinz the iteration. This ~ermits the

correct information to be extracted from the :cmruted auantities and it

zcermits the alorithr to be starr-ed as soon as rossible.

Roundoff error has a :si. =ificant :mrac-t on the Lanczcs al-orithm. -t

effect is not to nrevent converoence but only, to Jel ay i t a little and

a-so to na:ke the extraction of ei~zenvalues from the Fi:tz values som~ewhat more

complicated.

The im-cortance of inverting- the proper orerator, im=licitly of course,

as discussed in Section 3, is well1 illustrated by the lariczos Process.

There are mny problem-s in which K andM are both -.ositive definite, '. is

diagonal or nearly so, while K has a -1inificant bandwidth (such as

Most text books and references 3uzIest t'ne following reduction to standard form

K, ',I) (I- K 7 *
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Usually the eigenvalues near 0 are wanted and a may well be 0 or very

small relative to the largest eizenvalue. The eigenvalue distribution

typically is

0

This is difficult for Lanczos and disastrous for the power method with

the same operator. The only attraction of this approach for the large problems is

that no matrix factorization of K - aM is needed.

The temptation to avoid such factoring should be resisted. Even if

the cost is high the reduction of K - aM to LDL* is amply rewarded as sug-

gested in Section 3. For the operator Ml/ 2 (K - ) M,'2  the spectru is

inverted to:

0

This distribution is favorable for both subspace iteration and Lanczos but

Lanczos takes stronger advantage it.

STORAGE CONSIDERATIONS. Lanczos requires in the fast store, "i) two or three

n-vectors for the iteration, (ii) two vectors of modest length (say 5/n

to hold the tridiagonal T, , (iii) a small array to hold Ritz values.

It is also desireable, but not absolutely necessary to hold in fast storage

whatever is necessary to form Mq and to solve (K - aM)r = Mq . Often

this will be M and the triangular factors L and D of K - cM , The
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attractive feature of Lanczos is that each Lanczos vector can be put into

secondary storage (a disk perhaps) one step after it is created. These

vectors are not needed again to compute eigenvalues but they are required

at the end, after convergence, to form the eigenvectors. They can also

be used from time to time to improve the orthogonality among subsequent

Lanczos vectors and thus to hasten convergence. This device is called

selective orthogonalization and is described in [Parlett, 19801.

SHIFTS OF ORIGIN. Sometimes it is feasible to factor K - OM more than

once, perhaps for five different values of a . This facility helps both

subspace iteration and Lanczos because the big interval [T, T2 ] can be

split into five smaller ones and either algorithm can be used to find just

the eigenvalues in the subinterval. The choice for the five origin shifts

can be determined during the computation. Since Lanczos has available more

information on the spectrum than does subspace iteration it can make some-

what better choices for the 0

5. SOLVING (K - aM)r = Mu

Structural engineers are very fond of what they call (variable) band-

solvers. For two dimensional problems K has a modest bandwidth and L

inherits this structure. Each partial column of L is thought of as a

conventional vector from the top nonzero element in the column down to the

diagonal. In other words, zero elements within the band take uP storage

space. The gain is a beautifully simple data structure for L but for
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three dimensional problems and for complicated two dimensional structures

the waste of storage space is too expensive. More complicated but more

effcient data structures are called for.

Considerable progress has been made in this area of sparse matrix

technology and users should be aware of the enormous gains to be had from

using an ordering algorithm which effectively permutes rows and columns of

K and M to nearly minimize the number of nonzero elements in L .

7mportant algorithms for this task are (i) the minimum degree algorithm,

(ii) nested dissection, (iii) the Gibbs-Poole-Stockmeyer profile reducer.

Usually these are all better than the standard reverse Cuthill-McKee

algorithm. It is probably best to use some of the good sparse solver

codes now available rather than attempt to program the algorithms one-

self. The three best known codes are the Harwell library MA17 routines,

SPARSPAK by Alan George and J. Liu at Univ. of Waterloo, and the Yale

Sparse Matrix Package. The most recent reviews are [Duff, 1979] and [Duff

and Stewart, 1979].

It is important to remember that the linear systems to be solved

should be indefinite but will have most of their eigenvalues positive.

6. DAVIDSON'S METHOD

For very large (n > 10 ) problems which occur in atomic and

molecular orbit calculations the matrices are not very sparse but they

are quite special in the sense that the eigenvector matrix is fairly close

to the identity. Davidson's method [Davidson, 1975], which we have no

space to describe here, is based on perturbation theory and seems to be

S

A%
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very effective. However, both theoretical and practical considerations

[Kalamboukis, 1980] suggest that it cannot be regarded as a general purpose

eigenvalue method.
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5 @ 3.0 m = 15.C m

For all beams and columns: No. of Beam Elements 55

Young's Modulus = 1.0 KN/m 2  No. of Nodes = 36
[lass Density = 1.0 Kg/m 3  Total No. of D.O.F. : 90

Area = 1.0 m2

Mc.-,:ent of Inertia = 1.0 m4

Figure la. Building Frame.

1 A2  X'3 X4 A X AS X'1O All X12_I~ I I! I I !, I ,I !1.

0 0.05 0.1

Figure lb. Eigenvalues of the above system.
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Figure 2. Comparison of Solution Times for Obtaining

Increasing Number of Eigen pairs for Building

Frame of 2.
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